Biased Random-Key Genetic Algorithms Algoritmos Genéticos de Chaves Aleatórias Viciadas Jonatas B. C. Chagas ¹ Departamento de Computação Universidade Federal de Ouro Preto 8 de dezembro de 2017 Este material foi desenvolvido baseando-se em http://mauricio.resende.info/talks/2012-09-CLAIO2012-brkga-tutorial-both-days.pdf ## Summary Genetic algorithms (GAs) Random-key genetic algorithms (RKGAs) 3 Biased random-key genetic algorithm (BRKGAs) ## Genetic algorithms Introduction - Genetic algorithms (GAs) are metaheuristics inspired by the process of natural selection - ► GAs evolve population of individuals (solutions) applying Darwin's principle of survival of the fittest - ► A GA maintains a population of candidate individuals (solutions) for the problem at hand, and makes it evolve by iteratively applying a set of **stochastic operators** (selection, recombination and mutation) - selection: replicates the most successful individuals found in a population at a rate proportional to their relative quality - recombination (crossover): decomposes two or more distinct individuals and then randomly mixes their parts to form novel solutions - mutation: randomly perturbs a candidate individual ## Genetic algorithms Components - ► Encoding principles (gene, chromosome) - ► Initialization procedure (creation) - ► Selection of parents (reproduction) - ► Genetic operators (mutation, recombination) - ► Evaluation function (environment) - ▶ Termination condition #### Genetic algorithms **Evolutionary cycle** #### Introduction - ► Introduced by Bean (1994)¹ for sequencing problems - ▶ A random-key is a real random number in the continuous interval [0,1) - Individuals (solutions) of optimization problems can be encoded by random-keys - ► Individuals are strings of real-valued numbers (random-keys) - ► A decoder is a deterministic algorithm that takes a vector of random-keys as input and outputs a solution of the optimization problem $^{^{1}}$ Bean, J. C. (1994). Random-key genetic algorithms for sequencing and optimization. ORSA journal on computing, 6(2), 154-160. Encoding/decoding principles - ► Bean (1994)¹ proposed decoders based on sorting the random-key vector to produce a sequence - ► Encoding: $$s = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ ▶ Decode by sorting vector of random-keys: $$s' = \langle 0.05, 0.19, 0.25, 0.67, 0.89 \rangle$$ ► Therefore, the vector of random-keys: $$s = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ encodes the sequence: $\langle 4, 2, 1, 3, 5 \rangle$ ¹Bean, J. C. (1994). Random-key genetic algorithms for sequencing and optimization. ORSA journal on computing, 6(2), 154-160. Encoding/decoding principles - ► Other decodings: - subset selection (select 3 of 5 elements) #### Encoding/decoding principles - ▶ Other decodings: - subset selection (select 3 of 5 elements) encoding: $$s = \langle 0.099, 0.216, 0.802, 0.368, 0.658 \rangle$$ decode by sorting vector of random-keys: $$s' = \langle 0.099, 0.216, 0.368, 0.658, 0.802 \rangle$$ encodes the subset: $\{1, 2, 4\}$ #### Encoding/decoding principles - ▶ Other decodings: - subset selection (select 3 of 5 elements) encoding: $$s = \langle 0.099, 0.216, 0.802, 0.368, 0.658 \rangle$$ decode by sorting vector of random-keys: $$s' = \langle 0.099, 0.216, 0.368, 0.658, 0.802 \rangle$$ encodes the subset: $\{1, 2, 4\}$ • subset selection (select k of 5 elements, where $0 \le k \le 5$) #### Encoding/decoding principles - ▶ Other decodings: - subset selection (select 3 of 5 elements) encoding: $$s = \langle 0.099, 0.216, 0.802, 0.368, 0.658 \rangle$$ decode by sorting vector of random-keys: $$s' = \langle 0.099, 0.216, 0.368, 0.658, 0.802 \rangle$$ encodes the subset: $\{1, 2, 4\}$ • subset selection (select k of 5 elements, where $0 \le k \le 5$) encoding: $$s = \langle 0.82, 0.12, 0.54, 0.89, 0.26 \rangle$$ decoding: if $s_i \ge 0.5$ then select i encodes the subset: $\{1, 3, 4\}$ - ► For some cases of complex decoders is necessary to adjust the chromosome in order to produce a feasible solution - ► Knapsack problem: encoding: $$s = \langle 0.82, 0.12, 0.54, 0.89, 0.26 \rangle$$ decoding: if $s_i \ge 0.5$ then get item i encodes the subset items: $\{1, 3, 4\}$ $$\sum_{i=1,3,4} w_i \ge W \ (12+4+1 \ge 15)$$ so, a **deterministic** strategy must be applied to make the solution viable ▶ Initial population is made up of P random-key vectors, each with N keys, each having a value generated uniformly at random in the interval [0,1). $$\begin{aligned} s_1 &= \langle \mathsf{KEY}_1^1, \mathsf{KEY}_2^1, \cdots, \mathsf{KEY}_N^1 \rangle \\ s_2 &= \langle \mathsf{KEY}_1^2, \mathsf{KEY}_2^2, \cdots, \mathsf{KEY}_N^2 \rangle \\ &\cdots \\ s_P &= \langle \mathsf{KEY}_1^P, \mathsf{KEY}_2^P, \cdots, \mathsf{KEY}_N^P \rangle \end{aligned}$$ $$\mathsf{KEY}^i_j \leftarrow \mathsf{rand}\left[0,1\right) \qquad \qquad \forall i = 1..P, \forall j = 1..N$$ Selection of parents and recombination - ▶ Two parents *a* and *b* are randomly selected from the entire *P* population - ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems. $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$ $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$ $c = \langle$ ²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC. Selection of parents and recombination - ▶ Two parents *a* and *b* are randomly selected from the entire *P* population - ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems. $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$ $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$ $c = \langle 0.25, 0.26, 0.$ ²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC. Selection of parents and recombination - ▶ Two parents *a* and *b* are randomly selected from the entire *P* population - ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems. $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$ $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$ $c = \langle 0.25, 0.90, 0.$ ²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC. Selection of parents and recombination - ▶ Two parents *a* and *b* are randomly selected from the entire *P* population - ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems. $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$ $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$ $c = \langle 0.25, 0.90, 0.76,$ ²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC. Selection of parents and recombination - ▶ Two parents *a* and *b* are randomly selected from the entire *P* population - ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems. $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$ $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $$b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$$ $$c = \langle 0.25, 0.90, 0.76, 0.05,$$ ²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC. Selection of parents and recombination - ▶ Two parents *a* and *b* are randomly selected from the entire *P* population - ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems. $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$ $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $$b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$$ $$c = \langle 0.25, 0.90, 0.76, 0.05, 0.89 \rangle$$ ²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC Selection of parents and recombination - ▶ Two parents *a* and *b* are randomly selected from the entire *P* population - ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems. $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$ ► For each gene, flip a biased coin to choose which parent passes the allele (key, or value of gene) to the child. $$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$ $$b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$$ $$c = \langle 0.25, 0.90, 0.76, 0.05, 0.89 \rangle$$ If every random-key array corresponds to a feasible solution: Mating always produces feasible offspring. ²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC. - ► No mutation: mutants are used instead (they play same role as mutation in GAs ... help escape local optima) - ► A mutant is a new individual generated uniformly at random in the interval [0,1) $$m = \langle \mathsf{KEY}_1^m, \mathsf{KEY}_2^m, \cdots, \mathsf{KEY}_N^m angle$$ $\mathsf{KEY}_i^m \leftarrow \mathsf{rand}\left[0,1\right)$ $\forall j = 1..N$ - ► At the *k*-th generation, compute the cost of each solution and partition the individuals into two sets: - elite individuals (P_e) - non-elite individuals $(\overline{P}_e = P \setminus P_e)$ - ▶ Elite set should be smaller of the two sets and contain best individuals, i.e., $|P_e| < |P|/2$ #### Population K Next generation ► Copy elite individuals P_e from population k to population k+1 Population K+1 Elite solutions Next generation - ▶ Copy elite individuals P_e from population k to population k+1 - Add $|P_m|$ random individuals (mutants) to population k+1 Next generation - ▶ Copy elite individuals P_e from population k to population k+1 - ▶ Add $|P_m|$ random individuals (mutants) to population k+1 - ▶ While k+1-th population < P **do** - Use any two individuals in population k to produce child in population k+1. Mates are chosen at random. Introduction - ▶ A biased random-key genetic algorithm (BRKGA) is a random-key genetic algorithm (RKGA). - ▶ BRKGA and RKGA differ in how mates are chosen for crossover and how parameterized uniform crossover is applied. Selection of parents and recombination - ightharpoonup A parent a is randomly selected from the elite population P_e non-elite - ▶ A parent b is randomly selected from the elite population \overline{P}_e or is randomly selected from entire population P - ▶ For i=1,...,n, the i-th allele c_i of the offspring c takes on the value of the i-th allele a_i of the elite parent a with probability ρ_e and the value of the i-th allele b_i of the non-elite parent b with probability $1-\rho_e$ | Parent a | 0.32 | 0.77 | 0.53 | 0.85 | |----------------|------|------|------|------| | Parent b | 0.26 | 0.15 | 0.91 | 0.44 | | Random number | 0.58 | 0.89 | 0.68 | 0.25 | | $\rho_e = 0.7$ | < | > | < | < | | Offspring c | 0.32 | 0.15 | 0.53 | 0.85 | ▶ In this way, the offspring is more likely to inherit characteristics of the elite parent than those of the non-elite parent. Random solutions vs BRKGA solutions Comparing a BRKGA with a random multistart heuristic on an instance of a covering by pairs problem RKGA solutions vs BRKGA solutions Time to target plots compare running times needed to find the optimal solution of a 220 element covering by pairs problem with a BRKGA and two variants of a RKGA RKGA-ord is similar to a RKGA except that the offspring inherit the allele of the better fit of the two parents with probability ρ_e **Parameters** **Parameters** | Parameter | Description | Recommended value | |----------------|--------------------------------------|---| | P | size of population | $P=aN$, where $1\leq a\in\mathbb{R}$ is a constant and N is the length of the chromosome | | P_e | size of elite population | $0.10P \le P_e \le 0.25P$ | | P _m | size of mutant population | $0.10P \le P_m \le 0.30P$ | | $ ho_e$ | elite allele inheritance probability | $0.5 < ho_e \leq 0.8$ | | STOP | stopping criterion | e.g. time, # generations, solution quality, # generations without improvement | brkgaAPI: A C++ API for BRKGA - ► Efficient and easy-to-use object oriented application programming interface (API) for the algorithmic framework of BRKGA - ▶ Download: http://mauricio.resende.info/src/brkgaAPI/ #### References - ► Resende, M. G. (2012). Biased random-key genetic algorithms: A tutorial http://mauricio.resende.info/talks/2012-09-CLAI02012-brkga-tutorial-both-days.pdf - ► Gonçalves, J. F., & Resende, M. G. (2011). Biased random-key genetic algorithms for combinatorial optimization. Journal of Heuristics, 17(5), pp. 487-525