Biased Random-Key Genetic Algorithms

Algoritmos Genéticos de Chaves Aleatórias Viciadas

Jonatas B. C. Chagas ¹

Departamento de Computação Universidade Federal de Ouro Preto

8 de dezembro de 2017

Este material foi desenvolvido baseando-se em http://mauricio.resende.info/talks/2012-09-CLAIO2012-brkga-tutorial-both-days.pdf

Summary

Genetic algorithms (GAs)

Random-key genetic algorithms (RKGAs)

3 Biased random-key genetic algorithm (BRKGAs)

Genetic algorithms

Introduction

- Genetic algorithms (GAs) are metaheuristics inspired by the process of natural selection
- ► GAs evolve population of individuals (solutions) applying Darwin's principle of survival of the fittest
- ► A GA maintains a population of candidate individuals (solutions) for the problem at hand, and makes it evolve by iteratively applying a set of **stochastic operators** (selection, recombination and mutation)
 - selection: replicates the most successful individuals found in a population at a rate proportional to their relative quality
 - recombination (crossover): decomposes two or more distinct individuals and then randomly mixes their parts to form novel solutions
 - mutation: randomly perturbs a candidate individual

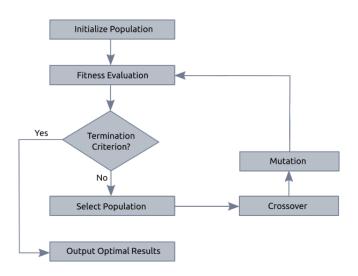
Genetic algorithms

Components

- ► Encoding principles (gene, chromosome)
- ► Initialization procedure (creation)
- ► Selection of parents (reproduction)
- ► Genetic operators (mutation, recombination)
- ► Evaluation function (environment)
- ▶ Termination condition

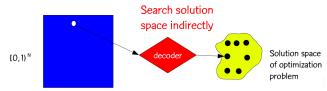
Genetic algorithms

Evolutionary cycle



Introduction

- ► Introduced by Bean (1994)¹ for sequencing problems
- ▶ A random-key is a real random number in the continuous interval [0,1)
- Individuals (solutions) of optimization problems can be encoded by random-keys
- ► Individuals are strings of real-valued numbers (random-keys)
- ► A decoder is a deterministic algorithm that takes a vector of random-keys as input and outputs a solution of the optimization problem



 $^{^{1}}$ Bean, J. C. (1994). Random-key genetic algorithms for sequencing and optimization. ORSA journal on computing, 6(2), 154-160.

Encoding/decoding principles

- ► Bean (1994)¹ proposed decoders based on sorting the random-key vector to produce a sequence
- ► Encoding:

$$s = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

▶ Decode by sorting vector of random-keys:

$$s' = \langle 0.05, 0.19, 0.25, 0.67, 0.89 \rangle$$

► Therefore, the vector of random-keys:

$$s = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

encodes the sequence: $\langle 4, 2, 1, 3, 5 \rangle$

¹Bean, J. C. (1994). Random-key genetic algorithms for sequencing and optimization. ORSA journal on computing, 6(2), 154-160.

Encoding/decoding principles

- ► Other decodings:
 - subset selection (select 3 of 5 elements)

Encoding/decoding principles

- ▶ Other decodings:
 - subset selection (select 3 of 5 elements)
 encoding:

$$s = \langle 0.099, 0.216, 0.802, 0.368, 0.658 \rangle$$

decode by sorting vector of random-keys:

$$s' = \langle 0.099, 0.216, 0.368, 0.658, 0.802 \rangle$$

encodes the subset: $\{1, 2, 4\}$

Encoding/decoding principles

- ▶ Other decodings:
 - subset selection (select 3 of 5 elements)
 encoding:

$$s = \langle 0.099, 0.216, 0.802, 0.368, 0.658 \rangle$$

decode by sorting vector of random-keys:

$$s' = \langle 0.099, 0.216, 0.368, 0.658, 0.802 \rangle$$

encodes the subset: $\{1, 2, 4\}$

• subset selection (select k of 5 elements, where $0 \le k \le 5$)

Encoding/decoding principles

- ▶ Other decodings:
 - subset selection (select 3 of 5 elements)
 encoding:

$$s = \langle 0.099, 0.216, 0.802, 0.368, 0.658 \rangle$$

decode by sorting vector of random-keys:

$$s' = \langle 0.099, 0.216, 0.368, 0.658, 0.802 \rangle$$

encodes the subset: $\{1, 2, 4\}$

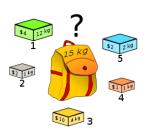
• subset selection (select k of 5 elements, where $0 \le k \le 5$) encoding:

$$s = \langle 0.82, 0.12, 0.54, 0.89, 0.26 \rangle$$

decoding: if $s_i \ge 0.5$ then select i

encodes the subset: $\{1, 3, 4\}$

- ► For some cases of complex decoders is necessary to adjust the chromosome in order to produce a feasible solution
- ► Knapsack problem:



encoding:

$$s = \langle 0.82, 0.12, 0.54, 0.89, 0.26 \rangle$$

decoding: if $s_i \ge 0.5$ then get item i encodes the subset items: $\{1, 3, 4\}$

$$\sum_{i=1,3,4} w_i \ge W \ (12+4+1 \ge 15)$$

so, a **deterministic** strategy must be applied to make the solution viable

▶ Initial population is made up of P random-key vectors, each with N keys, each having a value generated uniformly at random in the interval [0,1).

$$\begin{aligned} s_1 &= \langle \mathsf{KEY}_1^1, \mathsf{KEY}_2^1, \cdots, \mathsf{KEY}_N^1 \rangle \\ s_2 &= \langle \mathsf{KEY}_1^2, \mathsf{KEY}_2^2, \cdots, \mathsf{KEY}_N^2 \rangle \\ &\cdots \\ s_P &= \langle \mathsf{KEY}_1^P, \mathsf{KEY}_2^P, \cdots, \mathsf{KEY}_N^P \rangle \end{aligned}$$

$$\mathsf{KEY}^i_j \leftarrow \mathsf{rand}\left[0,1\right) \qquad \qquad \forall i = 1..P, \forall j = 1..N$$

Selection of parents and recombination

- ▶ Two parents *a* and *b* are randomly selected from the entire *P* population
- ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems.

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

 $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

 $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$
 $c = \langle$

²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC.

Selection of parents and recombination

- ▶ Two parents *a* and *b* are randomly selected from the entire *P* population
- ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems.

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

 $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

 $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$
 $c = \langle 0.25, 0.26, 0.$

²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC.

Selection of parents and recombination

- ▶ Two parents *a* and *b* are randomly selected from the entire *P* population
- ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems.

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

 $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

 $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$
 $c = \langle 0.25, 0.90, 0.$

²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC.

Selection of parents and recombination

- ▶ Two parents *a* and *b* are randomly selected from the entire *P* population
- ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems.

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

 $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

 $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$
 $c = \langle 0.25, 0.90, 0.76,$

²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC.

Selection of parents and recombination

- ▶ Two parents *a* and *b* are randomly selected from the entire *P* population
- ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems.

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

 $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

$$b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$$

$$c = \langle 0.25, 0.90, 0.76, 0.05,$$

²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC.

Selection of parents and recombination

- ▶ Two parents *a* and *b* are randomly selected from the entire *P* population
- ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems.

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

 $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

$$b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$$

$$c = \langle 0.25, 0.90, 0.76, 0.05, 0.89 \rangle$$

²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC

Selection of parents and recombination

- ▶ Two parents *a* and *b* are randomly selected from the entire *P* population
- ▶ Mating is done using parameterized uniform crossover (Spears & DeJong , 1990)² for sequencing problems.

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

 $b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$

► For each gene, flip a biased coin to choose which parent passes the allele (key, or value of gene) to the child.

$$a = \langle 0.25, 0.19, 0.67, 0.05, 0.89 \rangle$$

$$b = \langle 0.63, 0.90, 0.76, 0.93, 0.08 \rangle$$

$$c = \langle 0.25, 0.90, 0.76, 0.05, 0.89 \rangle$$

If every random-key array corresponds to a feasible solution: Mating always produces feasible offspring.

²Spears, W. M., & De Jong, K. D. (1995). On the virtues of parameterized uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC.

- ► No mutation: mutants are used instead (they play same role as mutation in GAs ... help escape local optima)
- ► A mutant is a new individual generated uniformly at random in the interval [0,1)

$$m = \langle \mathsf{KEY}_1^m, \mathsf{KEY}_2^m, \cdots, \mathsf{KEY}_N^m
angle$$
 $\mathsf{KEY}_i^m \leftarrow \mathsf{rand}\left[0,1\right)$ $\forall j = 1..N$

- ► At the *k*-th generation, compute the cost of each solution and partition the individuals into two sets:
 - elite individuals (P_e)
 - non-elite individuals $(\overline{P}_e = P \setminus P_e)$
- ▶ Elite set should be smaller of the two sets and contain best individuals, i.e., $|P_e| < |P|/2$

Population K

Next generation

► Copy elite individuals P_e from population k to population k+1

Population K+1 Elite solutions

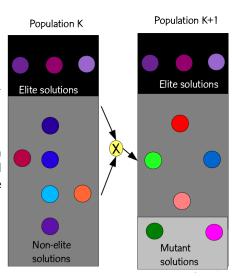
Next generation

- ▶ Copy elite individuals P_e from population k to population k+1
- Add $|P_m|$ random individuals (mutants) to population k+1



Next generation

- ▶ Copy elite individuals P_e from population k to population k+1
- ▶ Add $|P_m|$ random individuals (mutants) to population k+1
- ▶ While k+1-th population < P **do**
 - Use any two individuals in population k to produce child in population k+1. Mates are chosen at random.



Introduction

- ▶ A biased random-key genetic algorithm (BRKGA) is a random-key genetic algorithm (RKGA).
- ▶ BRKGA and RKGA differ in how mates are chosen for crossover and how parameterized uniform crossover is applied.

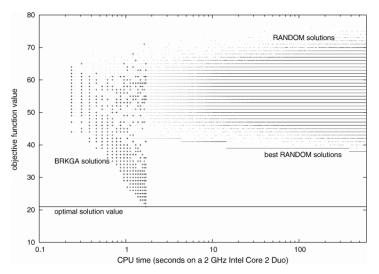
Selection of parents and recombination

- ightharpoonup A parent a is randomly selected from the elite population P_e non-elite
- ▶ A parent b is randomly selected from the elite population \overline{P}_e or is randomly selected from entire population P
- ▶ For i=1,...,n, the i-th allele c_i of the offspring c takes on the value of the i-th allele a_i of the elite parent a with probability ρ_e and the value of the i-th allele b_i of the non-elite parent b with probability $1-\rho_e$

Parent a	0.32	0.77	0.53	0.85
Parent b	0.26	0.15	0.91	0.44
Random number	0.58	0.89	0.68	0.25
$\rho_e = 0.7$	<	>	<	<
Offspring c	0.32	0.15	0.53	0.85

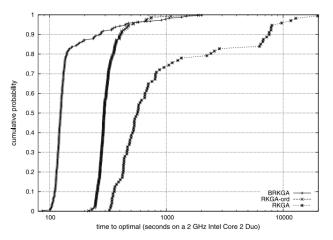
▶ In this way, the offspring is more likely to inherit characteristics of the elite parent than those of the non-elite parent.

Random solutions vs BRKGA solutions



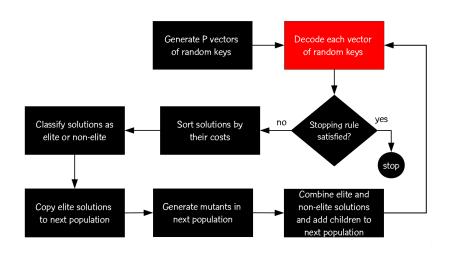
Comparing a BRKGA with a random multistart heuristic on an instance of a covering by pairs problem

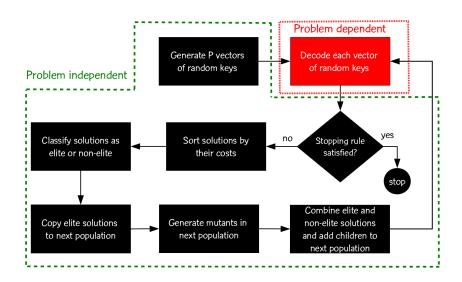
RKGA solutions vs BRKGA solutions



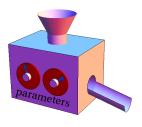
Time to target plots compare running times needed to find the optimal solution of a 220 element covering by pairs problem with a BRKGA and two variants of a RKGA

RKGA-ord is similar to a RKGA except that the offspring inherit the allele of the better fit of the two parents with probability ρ_e





Parameters



Parameters

Parameter	Description	Recommended value
P	size of population	$P=aN$, where $1\leq a\in\mathbb{R}$ is a constant and N is the length of the chromosome
P_e	size of elite population	$0.10P \le P_e \le 0.25P$
P _m	size of mutant population	$0.10P \le P_m \le 0.30P$
$ ho_e$	elite allele inheritance probability	$0.5 < ho_e \leq 0.8$
STOP	stopping criterion	e.g. time, # generations, solution quality, # generations without improvement

brkgaAPI: A C++ API for BRKGA

- ► Efficient and easy-to-use object oriented application programming interface (API) for the algorithmic framework of BRKGA
- ▶ Download: http://mauricio.resende.info/src/brkgaAPI/

References

- ► Resende, M. G. (2012). Biased random-key genetic algorithms: A tutorial http://mauricio.resende.info/talks/2012-09-CLAI02012-brkga-tutorial-both-days.pdf
- ► Gonçalves, J. F., & Resende, M. G. (2011). Biased random-key genetic algorithms for combinatorial optimization. Journal of Heuristics, 17(5), pp. 487-525